Classification of nephritis from inflammation
Context
The data set has been collected from the UCI repository .The data was created by a medical expert as a data set to test the expert system, which will perform the presumptive diagnosis of two diseases of the urinary system
Content
Data Set Characteristics: Multivariate
Attribute Characteristics: Categorical, Integer
Associated Tasks: Classification
Number of Instances: 120
Number of Attributes: 6
Missing Values? No
Area: Life
Date Donated: 2009-02-11
The main idea of this data set is to prepare the algorithm of the expert system, which will perform the presumptive diagnosis of two diseases of urinary system. It will be the example of diagnosing of the acute inflammations of urinary bladder and acute nephritises. For better understanding of the problem let us consider definitions of both diseases given by medics. Acute inflammation of urinary bladder is characterised by sudden occurrence of pains in the abdomen region and the urination in form of constant urine pushing, micturition pains and sometimes lack of urine keeping. Temperature of the body is rising, however most often not above 38C. The excreted urine is turbid and sometimes bloody. At proper treatment, symptoms decay usually within several days. However, there is inclination to returns. At persons with acute inflammation of urinary bladder, we should expect that the illness will turn into protracted form.
Acute nephritis of renal pelvis origin occurs considerably more often at women than at men. It begins with sudden fever, which reaches, and sometimes exceeds 40C. The fever is accompanied by shivers and one- or both-side lumbar pains, which are sometimes very strong. Symptoms of acute inflammation of urinary bladder appear very often. Quite not infrequently there are nausea and vomiting and spread pains of whole abdomen.
The data was created by a medical expert as a data set to test the expert system, which will perform the presumptive diagnosis of two diseases of urinary system. The basis for rules detection was Rough Sets Theory. Each instance represents an potential patient.
The data was created by a medical expert as a data set to test the expert system, which will perform the presumptive diagnosis of two diseases of urinary system. The basis for rules detection was Rough Sets Theory. Each instance represents an potential patient. The data is in an ASCII file. Attributes are separated by TAB. Each line of the data file starts with a digit which tells the temperature of patient.
Acknowledgements
Source:
Jacek Czerniak, Ph.D., Assistant Professor
Systems Research Institute
Polish Academy of Sciences
Laboratory of Intelligent Systems
ul. Newelska 6, Room 218
01-447 Warszawa, Poland
e-mail: jacek.czerniak 'at' ibspan.waw.pl or jczerniak 'at' ukw.edu.pl